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Lifshitz Tails for Periodic Plus 
Random Potentials 
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We prove that the integrated density of states p(2) for a potential 
W,~ = Vper + V,o has Lifshitz tails where Vp~ r is a periodic potential with reflec- 
tion symmetry and V,o is a random potential, e.g., of the form 
V~ = Z q,((.o) f ( x  - i). 

KEY W O R D S :  Lifshitz tails; Anderson model; Dir ichlet-Neumann 
bracketing. 

1. I N T R O D U C T I O N  

We consider a random Schr6dinger operator 

H~ = H o +  VpCr+ V~ 

on L2(~"), where H 0 = -A ,  Vp~r is a periodic potential, and V~ is a ran- 
dom potential of the form 

V,~(x)= ~, q,(oo)f(x-i)  (1) 

f i s  a nonnegative function with f ( x )=  O([x[ . . . .  ) as Ix[ ~ ~ ,  fELP(~ v) 
with p= 2 for v ~< 3, p >  2 for v=4, p= v/2 for v>~ 5. {qi}i~zv are indepen- 
dent random variables with a common distribution Po. We assume that the 
support suppPo of P0 is compact, is not a single point, and 
0 = inf supp Po. Moreover, Po([0, e)) t> Ce N for some C, N >  0. 
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Vper is a ZV-periodic function that is locally L p (p as above), and Vper 
is invariant under reflections of the coordinate axes, i.e., with 
Ri(x l , . . . , x~)=(Xl , . . . , x i_ l , -x i ,  xi+l,...,x~) we have V(Rix)= V(x) for 
i =  1,..., v. For example, if Vper(X)=~fo(X--i) ,  then Vp~ is reflection 
invariant iffo is spherically symmetric (or reflection invariant itself). 

Instead of taking Z" as the periodicity lattice of We ~, we could take 
any other lattice as well, provided we a s s u m e  Vpe r t o  be reflection invariant 
with respect to this lattice. However, for notational convenience, we deal 
only with the above easier situations. Our proofs can be easily transferred 
to the more complicated one. However, as we will explain, we do not know 
how to do one step in our proof if the continuum SchrSdinger operator is 
replaced by a discrete one. 

Let us denote by AL the cube 

AL~- {(X1,.. .  , Xv) I --L/2<~x,<<.L/2; i=- 1,..., v} 

By H~ 'D (resp. c,N HL,per] H . . . . .  we denote the operator H~ restricted to 
L2(AL) with Dirichlet (resp. Neumann, resp. periodic) boundary con- 
ditions. Setting H1 = H o + [/per, we define H~ ,D, etc. in a similar way. It is 
well known that these operators on L2(AL) are bounded below and have a 
purely discrete spectrum (see, e.g., Ref. 17). We denote the eigenvalues of 
such an operator A counted according to their multiplicity and increasingly 
ordered by Li(A), i= l, 2,.... We set p(2, A)= #{)L~(A)<~ 2}. Then the 
integrated density of states p(2) of H~o is defined by 

p(2)=  lim 1 L ~ ~ L "-7 p(2, mL'D]w , 

It is well known that the above limit exists almost surely, is (a.s.) indepen- 
dent of co, and the boundary condition chosen (see, e.g., Refs. 1, 8, and 15 
and references given there). 

In 1965, Lifshitz (H) argued on the basis of physical reasoning that 
p(2) should behave near the bottom 20 of the spectrum cr(Ho~) as 
Cl exp[-c2()~-20)  -v/2] as )~, ,~o. This is in sharp contrast to the periodic 
case (V~,-0)  where p ( 2 ) ~ ( 2 - 2 0 )  v/2 (see Ref. 10). The Lifshitz behavior 
for random potentials was rigorously proven for certain special potentials 
by Benderskii and Pastur, (2) Friedberg and Luttinger, (4~ Luttinger, ~ 
Nakao, ~14) and Pastur, (16/ as well as for some discretized Schr6dinger 
operators on 12(Y_ v) by Fukushima, (5~ Nagai, (13) and Romerio and 
Wreszinski (~8) (see also Ref. 6). The works of Nakao and Pastur treat non- 
negative potentials with Poisson distributed sources. This special 
probabilistic situation allows them to make use of the powerful 
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Donsker-Varadhan (3) machinery to treat a large-deviations problem. 
Nakao and Pastur actually proved in their case 

lim [ - 2  +~/2 In p(x)3 = 7v 
2.[0 

where 7,. is the smallest eigenvalue of - ( 1 / 2 ) A  on the unit ball with 
Dirichlet boundary conditions. More recently, Kirsch and Martinelli (7'9) 
proved for rather general random potentials (for which 2 0 = 0) that 

lim ln[ln P(2)-1] v 
~ o  In 2 2 

For example, they treated the case of (1) with Vpe;= 0 (for a proof see 
Ref. 7). In Ref. 19, Simon used their method for a lattice model using Tem- 
ple's inequality (instead of Thirring's bound). We will also use this device, 
since Temple's inequality seems to give better results in our case. These 
papers exploit Dirichlet-Neumann bracketing as we will see here. The use 
of Neumann bracketing in this context seems to have appeared as early as 
the work of Harris, (2~ and was also used recently by Mezincescu ~21) to 
obtain independently results close to those in Ref. 19. 

We will prove the following theorems: 

T h e o r e m  1. Let Vpe r be a periodic, reflection invariant potential 
and qi i.i.d, random variables whose common distribution P0 satisfies: 
supp Po is compact, inf(supp P0) = 0, Po([0, s)) ~> Cs N, Po({0}) r 1. Let 
f e L P ( N  v) satisfy O<~f(x)<~CIxl  . . . .  for large Ixt. We set 
V o ) ( x ) = ~ q i ( c o ) f ( x - i ) ,  Ho~=H0+ Vper+ V~ and 2o=infa(H~) .  We 
denote by p(2) the integrated density of states for H,). 

(i) Iff(x)~< C Ixl-V-2(fx] large), then 

lira ln{ - l n  p(2)} _ __v 
~,~o In 2 2 

(ii) If C l ( 1 - { - I x I ) - ~ < ~ f ( x ) < ~ C 2 ( l + l x I )  - ~  with v < e < v + 2 ,  and 
C1 > 0, then 

lim In{ -1i:  0(2)} v 
~,~J.o ln2  c~-v 

In the one-dimensional case, we have the following: 

T h e o r e m  2. For v = 1, (i) and (ii) of Theorem 1 hold even without 
the assumption of reflection invariance of Vper. 
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We remark that besides the potentials Vo, as above, we can equally 
well treat other random potentials considered in Refs. 7 and 9. In addition, 
we remark that if inf supp Po=a and Po([a, a +  e))~> C~, N, w e  can replace 
Vper by Vp~(x)+ a Y.~z~ f ( x -  i) and q~ by q ~ - a  and reduce to the case 
considered here. In particular, the purely random case (Vp~ = 0) but with 

�9 inf supp Po ~ 0 should be thought of as a periodic plus positive random 
situation. 

2. T H E  U P P E R  B O U N D  

Now, we turn to the proofs of the upper bounds in Theorems 1 and 2. 
Suppose that ~(x)~< V(x). Then p(2)~<t3(,~) if p()L) and t~(2) denote the 
integrated density of states for Ho + V and Ho + V, respectively. Therefore 
we can suppose that supp f c  A j for the upper bound. 

For the situation (i), this replacement ( o f f b y f t i m e s  the characteristic 
function of A~) is possible, but for case (ii) we will need to exploit the tails 
off. 

Following Ref. 9, we estimate 

(2) 

for any L. The first inequality comes from Neumann bracketing, and the 
second by noting that p().,H~.~ H~ ,~ for any co and that 
P(), HZ"D~o~ , = 0 if )t I~HL'N~co I > ,L Hence we have to estimate P()q(H~,N),<<..~) 
from above, which will be given by an estimate of L.u ,~l(Ho0 ) from below. 
Following Ref. 19, we do this estimate by Temple's inequality. 

We state this inequality for the reader's convenience; for a proof, we 
refer to Reed and Simon/17) 

Proposition 1. Let H be a self-adjoint operator which is bounded 
below. Suppose that 21(H) < 22(H) and/~ ~< )~2(H). If 0 is a normalized vec- 
tor in the domain of H such that (0 ,  HO)  < #, then 

(~,  H 2 ~ ) -  (~,  H ~ )  2 

u -  (0,/~q,> 

Since V~, ~> 0, we have that ~2(H1L'N) ~ " L N z2(Ho,' ) SO that ,~2(H L'N) may serve 
as the # in Temple's inequality. 

Before we apply Temple's inequality in the proof of Proposition 3, we 
need the following estimate proven in Ref. I0: 



Lifshitz Tails for Periodic Plus Random Potent ia ls 803 

Proposition 2. Suppose that VI is a reflection invariant periodic 
potential. Then 

& ( H f  '~) - 2 , (Hf  '~) >/~L -~ 
for a constant cr > 0. 

The proof in Ref. 10 uses the fact that, because of the reflection sym- 
metry, the ground state CL.,V of H L'N is, at the same time, the ground state 
00 of H~ 'p~r. This observation also implies that 2~(H~ ,N)= 
21(H~,P~)=inf(a(Hl)). In particular, 21(H L,N) is independent of L, so by 
adding a constant, we may suppose that 21(H L,ev) = 0  for all L. Moreover, 
if r denotes the normalized positive ground state of HI ,p" extended to 
g~v periodically, then (1/L ~/2) Co(X) is "the" normalized ground state of 
H L'N. For later use, we . define f~ = ~A~ f (x )  {O0(X)I 2 dx and 
f2 =.[al f ( x )  2 10o(x)J 2 dx. Without loss of generality, we assume that f l  = 1. 

We note that the arguments in Ref. 10 exploit the fact that H0 + V can 
be written as a Dirichlet form <f0o, ( H 0 +  V - i n f a ( H  I))f0o> = 
( (V f ) r  (V f ) 0 0 > ,  something that does not extend to the discrete case. 
Thus, until Proposition 2 is extended to the discrete case, we cannot extend 
our proof to that case. 

Now, we choose L = [(f12)-~n] where Ix ]  denotes the largest integer 
~<x, fi will be chosen later. By Proposition 2, we have 22(H~ ,'~e) ~> ~fl,t The 
key for our estimate of P(2~(H~ ,x) < 2) is the following. 

Proposition 3. Suppose fi~>fio for a constant flo (independent of 
L). If L.N 2~(Ho~ ) < 2, then 

# {ieAalq~(co)<42} >�89 ~ 

Proof. We want to use Proposition 1 (Temple's inequality) with 
1 / :  ),2(HI&N) ~ L,N 22(H,0 ) and 0(x)  = (1/L u/2) Oo(x). To ensure <0, H e  > < #, 
we set ~(co)= min{q,(o), 82} and P~(x )=  Z ~ ( c o ) f ( x -  i), FIo, = H~ + F/~,. 
We have 

<0, fi2' 0 > : 

I fa 1 ~ q,(c.o) :L--7~O~(c~ o f ( x - i ) I @ o ( X ) } Z d x : - - ~ i  ~ ~ 8 2  

Thus, taking /7 >/~o large enough, we can ensure that 
(8 + 32f2) 2 ~< 22(H~ ,u) by Proposition 2. Therefore we may apply Temple's 
inequality to /~N,L and obtain 

1 (UL') Z O (o )A 
i e A L  

i e A L  
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Now, if the conclusion of the proposition was wrong, then the right-hand 
side of the above inequality would be larger than -~ in contradiction to the 
assumption. | 

It is a standard result of probability theory that the event 
# {i s ALL qi < 42} > �89 ~ has exponentially small probability if 2 is small 
enough. 

P r o p o s i t i o n  4. Suppose {qi}i~z, are i.i.d, random 
satisfying E(qo)> 7- Then there exists a constant c > 0 such that 

P( # { ie  ALIqi(c))< 7} >�89 ") <~ e -cL~ 

variables 

For a proof, see, e.g., Ref. 19. 
We remark that the above proposition remains true for q~ mixing, 

stationary {qi} (see, e.g., Ref. 7). Since Proposition 4 is the only 
probabilistie estimate we need for the upper bounds, this part of the 
theorems holds under the above weaker condition on {qi}. 

Combining Propositions 3 and 4, we obtain 

P()~I(H L'N) < )~) ~ e-~L~ = e-C';~-~/a 

Since (l/[ALL) p(~l Hr,~v) ~< M (for 2 bounded), we obtain the upper bound 
from inequality (2). This completes the proof of the upper bound in 
Theorem 1(i). 

Now we turn to the upper bound in (ii). We do not cut off f to live on 
A 1. We set [x{m:=maxi=l  ...... lx~l. We have f (x )>~c( l+lx l ,n)  -~ by 
assumption with c~ > v, c > 0. We use the following crude estimate [we nor- 
malized ) ~rrL U'~ 0]" 

P()~I(H L'~) < ).) ~< P (min  V,~(x) < r 
x E A  L 

where t is arbitrary. 



Lifshitz Tails for Periodic Plus Random Potentials 805 

We choose L =  [?2 -1/(~ v)], and set 

1(2) := {ilt(?2 -'/( .... )+ lilr~)-= 2 ~/(=-~)>>- 1} 

(*)<~P( ~ c'q,(og)<t2 -~/'~-~') 
\ i ~  1(2) 

<<.P( ~, C'qi(CO)<t~, -v/(~-v)) 
teA[(i/2)ti/e 1/(~ v)] 

since I(,~) c Ar(~/2~,,,.a_,/(,_~ ? = A for suitable y = ?(t). 

(.) <~ er E( e - ~,~ A,.'q,(o))) 

by the Tschebyscheff inequality in exponential form. Observing 
E(e-c'q~ < 1, we have 

)iv ( , )  <~exp[t2-v/(~-v)[In E(e-Cq~ tl/~t -1/(~-~) 

<~exp[-R-~/(~-~)(llnE(e-c'qo)llt~/~-t) 

that 

for 2 large enough. Choosing now t so small (positive) that 

t~/~ 
fin E(e c'q0)] - ~ - -  [ > 0 

we obtain the desired result. 
In one dimension (without requiring reflection symmetry), we observe 

that the derivative of the (positive) ground state 00 of HI ,per must vanish in 
A s, say, at the point Xo. By periodicity, ~b o solves the Schr6dinger equation 
in the interval AL = [ - L / 2  + xo, L/2 + x0] with Neumann boundary con- 
ditions. Oo is the ground state of the Neumann problem by positivity. So 
we may estimate .~t(HA1 z'N) = )~x(H~ L,ver) by the above methods. This proves 
the upper bounds in Theorem 2. 

3. THE LOWER B O U N D  

To obtain the lower bounds, we estimate 

0(2) >~ ~ P(;~(H~'~) < ,~) 

We set 20=infa(H1). Let Z be a real-valued C ~ function with suppz c A3/4, 

822/42/5~6-6 
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Z(x) = 1 for x s A ~/2 and set ZL(x)= Z(x/L). As before, let ~o be the positive 
ground state of HI 'p~ normalized such that ~A~ IOo(X)] 2 dx = 1. 

We extend ~o to a periodic function on all of RL 

Proposi t ion  5: 

~< 2 0 + cL -2 

Proof: 

{ZLOo, H}'D(ZL OO) ) 

(ZLOo, ZL~O) 
2 0 -  

< (vz~) 6o, (VzL) ~,o) 
<ZL~0, ZL)o> 

by the standard Dirichlet form calculation (integration by parts). But 
clearly for L large, (ZLOo, ZL~ko) t>2-~IAL[ and ((VzL) r 
(VxL) $o)~< cL-2  IAL[. Combining these estimates, we obtain the desired 
result. I 

Coro l la ry .  2t(H~ '~) - 2 0 <~ cL -2. 

Proof. Use ZLOo as a trial function in the mini-max principle. I 

By adding a constant, we may suppose that 20=0.  Henceforth, we 
take L =  [ (2c2- i )  u2] + 1. By the above proposition and the corollary, we 
have 

>~ p (.{ZLO~ V ' X L ~ ~  < 2/2 ) 
�9 ( z L O o ,  zLOo> 

> ~ P ( l y v ~ , ( x ) d x < 2 / 2 M )  

where M = 2 ~ sup l~Po(x)t 2. Since, by assumption, supp Po is compact, there 
is an A such that ]qe(r ~<d almost surely. Moreover, we assume that 
fix) ~< Co Ixl-v-~ for Ixl > 1 (the case that the estimate on f h o l d s  only for 
}x] > Ro can be handled in the same way). 

P r o p o s i t i o n  6. There are constants cl, c2 > 0 such that if qi < cl)~ 
for t i -- j l  ~< c2 2-~/2, then ~A~ Vo~(x - i) dx < 2. 
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Proof. Without loss of generality, take i =  0. Set J =  C2 ~-1/2, 

j e Z ~  I 

<<. ~ qj(o) fA f(x-j)dx+Aco f, Ixt-V-e dx 
IJl 4 J 1 xl  >" J 

Set c3 = lJfll~ and c4 = sup,  J~ I[~l >s Ix1 - ~ - :  dx( < o0). Then, by the above, 

f A~ V,o(x) dx ~ ctc32 + c22Acoc42 

so we choose c1=�89163 ~ and c2= (2Acoca) m. | 

Proposition 7. There are constants D, y > 0 such that 

P --~ V~,(x) dx < - ~  ~ P(qo < D2) 'z~ 
L 

with L related to 2 as above. 

Proof. 

P ( l  fAL Vo,(x) dx <2/2M ) 

>>" P(fA~ V~(x- j )dx<2/2M forall  jSAL)  

>t P(q~<C~2 forall  jw i th  Ijp~<~L+C'22 -~/2) 

by the previous proposition 

>1 P(qo < D;t) "~Lv 

for 7 large enough. | 

Collecting our various estimates, we end up with 

p()o) >~ M12- v/2P(q o < C2 ) ~L~ 

>1 M22 - v/Z)j'L' >/M22 - V/2e - i3x-~/21n()~-l) 

which finishes the proof of Theorems l(i) and 2(i) since we did not use any 
reflection invariance. 

The proofs of the second parts of the theorems go precisely along the 
same lines. The main change is in Proposition 6; we must pick J =  2 - l / v -  
and so require L to be of the same order. 
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